Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.04.21264015

ABSTRACT

Predicting COVID-19 severity is difficult, and the biological pathways involved are not fully understood. To approach this problem, we measured 4,701 circulating human protein abundances in two independent cohorts totaling 986 individuals. We then trained prediction models including protein abundances and clinical risk factors to predict adverse COVID-19 outcomes in 417 subjects and tested these models in a separate cohort of 569 individuals. For severe COVID-19, a baseline model including age and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 92 proteins from the 4,701 unique protein abundances improved the AUC to 88% in the training cohort, which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. Proteins selected from different adverse COVID-19 outcomes were enriched for cytokine and cytokine receptors, but more than half of the enriched pathways were not immune-related. Taken together, these findings suggest that circulating proteins measured at early stages of disease progression are reasonably accurate predictors of adverse COVID-19 outcomes. Further research is needed to understand how to incorporate protein measurement into clinical care.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.10.20191486

ABSTRACT

COVID-19 is a global pandemic that has resulted in over 800,000 deaths. Robust humoral anti-viral immune responses have the potential to generate a diverse set of neutralizing antibodies to eliminate viruses and protect against re-infection, transmission, and the evolution of mutations that escape targeted therapeutics. CD73 is present on the majority of human B cells and a subset of T cells where it plays a role in lymphocyte activation and migration. CD73 also functions as an ectoenzyme that converts AMP into adenosine, which can be immunosuppressive. Here we report on CPI-006, a humanized Fc{gamma}R binding-deficient IgG1 anti-CD73 antibody that blocks CD73 enzymatic activity and directly activates CD73+ B cells, inducing differentiation into plasmablasts, immunoglobulin class switching, and antibody secretion independent of adenosine. Immunophenotypic analysis of peripheral blood from advanced cancer patients receiving CPI-006 revealed evidence of B cell activation, clonal expansion, and development of memory B cells. These immune effects suggested that CPI-006 may be effective at enhancing the magnitude, diversity, and duration of humoral and cellular responses to viruses such as SARS-CoV-2. We have therefore initiated a Phase 1, single-dose, dose-escalation trial in hospitalized patients with mild to moderate COVID-19. The objectives of this trial are to evaluate the safety of CPI-006 in COVID-19 patients and to determine effects of CPI-006 on anti-SARS-CoV-2 antibody responses and the development of memory B cell and T cells. Ten patients have been enrolled in the trial receiving doses of 0.3 mg/kg or 1.0 mg/kg. All evaluable patients had low pre-treatment serum levels of anti-viral antibodies to the SARS-CoV-2 trimeric spike protein and its receptor binding domain, independent of the duration of their COVID-19 related symptoms prior to enrollment. Anti-viral antibody responses were induced 7 days after CPI-006 treatment and titers continued to rise past Day 56. Increases in the frequency of memory B cells and effector/memory T cells were observed 28 days after treatment. These preliminary results suggest that CPI-006 activates B cells and may enhance and prolong anti-SARS-CoV-2 antibody responses in patients with COVID-19. This approach may be useful for treating COVID-19 or as an adjuvant to enhance the efficacy of vaccines.


Subject(s)
COVID-19 , Neoplasms
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.28.20115758

ABSTRACT

The COVID-19 pandemic caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to more than 100,000 deaths in the United States. Several studies have revealed that the hyper-inflammatory response induced by SARS-CoV-2 is a major cause of disease severity and death in infected patients. However, predictive biomarkers of pathogenic inflammation to help guide targetable immune pathways are critically lacking. We implemented a rapid multiplex cytokine assay to measure serum IL-6, IL-8, TNF-, and IL-1{beta} in hospitalized COVID-19 patients upon admission to the Mount Sinai Health System in New York. Patients (n=1484) were followed up to 41 days (median 8 days) and clinical information, laboratory test results and patient outcomes were collected. In 244 patients, cytokine measurements were repeated over time, and effect of drugs could be assessed. Kaplan-Meier methods were used to compare survival by cytokine strata, followed by Cox regression models to evaluate the independent predictive value of baseline cytokines. We found that high serum IL-6, IL-8, and TNF- levels at the time of hospitalization were strong and independent predictors of patient survival. Importantly, when adjusting for disease severity score, common laboratory inflammation markers, hypoxia and other vitals, demographics, and a range of comorbidities, IL-6 and TNF- serum levels remained independent and significant predictors of disease severity and death. We propose that serum IL-6 and TNF- levels should be considered in the management and treatment of COVID-19 patients to stratify prospective clinical trials, guide resource allocation and inform therapeutic options. We also propose that patients with high IL-6 and TNF- levels should be assessed for combinatorial blockade of pathogenic inflammation in this disease.


Subject(s)
Severe Acute Respiratory Syndrome , Hypoxia , Death , COVID-19 , Inflammation
SELECTION OF CITATIONS
SEARCH DETAIL